459. Preparation of 3,4-Diamino-, 3-Amino-4-methylamino-, and 4-Amino-3-methylamino-pyridine.

By J. W. Clark-Lewis and R. P. Singh.
Convenient syntheses of 3,4 -diamino- and 4 -alkylamino-3-aminopyridines are described. A route to 3 -alkylamino- 4 -aminopyridines is illustrated by preparation of 4 -amino- 3 -methylaminopyridine from 3 -bromo-4-nitropyridine 1-oxide.

Nucleophilic displacement of the ethoxy-group in 4-ethoxy-3-nitropyridine (I) hydrochloride by ammonia and amines occurs readily and provides a convenient route to 4 -aminoand 4-alkylamino-3-nitropyridines (II; $\mathrm{R}=\mathrm{H}$, alkyl) and the related diaminopyridines. 4 -Methoxy-3-nitropyridine was used in this way be Bremer ${ }^{1}$ before it was recognised ${ }^{2}$ that Koenigs and Freter's " 4 -chloro- 3 -nitropyridine" ${ }^{3}$ is 4 -ethoxy-3-nitropyridine hydrochloride. Preparation of 4 -ethoxy-3-nitropyridine from unstable ${ }^{2}$ 4-chloro-3nitropyridine was recently reported, ${ }^{4}$ but 4 -ethoxy-3-nitropyridine hydrochloride may be obtained much more simply, and almost quantitatively, from 4-hydroxy-3-nitropyridine without isolation of the chloro-intermediate. 4-Amino-3-nitropyridine (II; $\mathrm{R}=\mathrm{H}$) and 4-methylamino-3-nitropyridine ($\mathrm{II} ; \mathrm{R}=\mathrm{Me}$) were then obtained in nearly theoretical yield by heating the ethoxynitropyridine (I) hydrochloride in an autoclave with aqueous ammonia or aqueous methylamine. The primary starting material in these syntheses is 4 -hydroxypyridine, but an alternative is isonicotinohydrazide: this was converted into
${ }^{1}$ Bremer, Annalen, 1935, 518, 274.
${ }^{2}$ Bremer, Annalen, 1937, 529, 290.
${ }^{3}$ Koenigs and Freter, Ber., 1924, 57, 1187.
${ }^{4}$ Bijlsma, den Hertog, Jouwersma, Kolder, Combé, Krol, and Buurman, Rec. Trav. chim., 1956, 75, 1187.

4-ethoxycarbonylaminopyridine, and nitration gave 4-ethoxycarbonylamino-3-nitropyridine (III) which by hydrolysis afforded 4-amino-3-nitropyridine (II; R $=\mathrm{H}$), whereas hydrolysis after methylation gave 4-methylamino-3-nitropyridine (II; $\mathrm{R}=\mathrm{Me}$).

4-Alkylamino-3-aminopyridines are therefore readily available by reduction of the 3 -nitro-compounds, but synthesis of 3 -alkylamino-4-aminopyridines proved more difficult. Methylation of 4 -amino-3-toluene- p-sulphonamidopyridine, followed by hydrolysis, gave a low yield of 4 -amino-3-methylaminopyridine, and it did not appear feasible to develop this into a satisfactory preparatory procedure. 3-Bromo-4-nitropyridine 1-oxide ${ }^{5}$ (IV) and methylamine, however, gave a good yield of 3 -methylamino-4-nitropyridine 1 -oxide, and catalytic hydrogenation converted the N-oxide into the required 4-amino-3-methylaminopyridine (V). 3-Bromopyridine, obtained from 3-aminopyridine, was converted into 3 -bromopyridine 1 -oxide with hydrogen peroxide in preference to perphthalic acid, and the nitration step was also improved to give 3 -bromo-4-nitropyridine 1 -oxide (IV) in 52% overall yield from 3 -aminopyridine.

The 3 -amino-group in 3,4 -diaminopyridine is more nucleophilic than the 4 -aminogroup and, as expected, reaction of the diamine with toluene- p-sulphonyl chloride gave 4 -amino-3-toluene- p-sulphonamidopyridine; the isomeric 3 -amino-4-toluene- p-sulphon-amido-compound was prepared by reduction of 3 -nitro- 4 -toluene- p-sulphonamidopyridine.

The pyridinediamines were converted into 1,4,6-triazanaphthalenes (to be reported later), 2 -mercapto-1,3,5-triazaindene, and 1,2,3,5-tetra-azaindene for test as tumour inhibitors.

Experimental

4-Ethoxy-3-nitropyridine (I) Hydrochloride and 3-Amino-4-ethoxypyridine Hydrochloride.-4-Hydroxy-3-nitropyridine ${ }^{1,6}$ (60 g .) was converted with phosphorus pentachloride (100 g .) into 4-ethoxy-3-nitropyridine hydrochloride ($86 \mathrm{~g} ., 98 \%$), needles (from ethanol), m. p. 270-271 ${ }^{\circ}$, essentially by the method of Koenigs and Freter, ${ }^{3}$ who described the product as 4 -chloro-3nitropyridine (Found: C, $41 \cdot 1 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{Cl}, 17.6 . \mathrm{C}_{2} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}, \mathrm{HCl}$ requires $\mathrm{C}, 41 \cdot 1 ; \mathrm{H}, 4 \cdot 4$; Cl, $17 \cdot 4 \%$). 4-Methoxy-3-nitropyridine hydrochloride has been prepared similarly. ${ }^{1,2}$ Hydrogenation of the ethoxy-compound (5 g .) in ethanol (250 c.c.) over Raney nickel gave 3-amino-4ethoxypyridine hydrochloride, which crystallised from aqueous ethanol in needles ($\mathbf{3 . 0} \mathrm{g} ., 70 \%$), m. p. 216° (Found: C, $48 \cdot 3 ; \mathrm{H}, 6 \cdot 4 . \mathrm{C}_{7} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}, \mathrm{HCl}$ requires $\mathrm{C}, 48 \cdot 2 ; \mathrm{H}, 6 \cdot 4 \%$).

4-A mino-3-nitropyridine (II; $\mathrm{R}=\mathrm{H}$).-(a) 4-Ethoxy-3-nitropyridine hydrochloride (18.6 g .) and aqueous ammonia ($d 0.88$; 50 c.c.) were heated under pressure at 120° for 8 hr . The crystalline 4 -amino- 3 -nitropyridine (13.3 g ., 98%) was collected, and recrystallisation from ethanol (charcoal) gave needles, m. p. 204° (lit., ${ }^{7}$ m. p. 200°) (Found: C, 43.6; H, 3.7; N, 29.5. Calc. for $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 43.2 ; \mathrm{H}, \mathbf{3 . 6} ; \mathrm{N}, 30.2 \%$). The picrate melted at $197-198^{\circ}$ and the hydrochloride at $260-261^{\circ}$ (lit., ${ }^{7} 197-198^{\circ}$ and 258-259 ${ }^{\circ}$. 3-Nitro-4-toluene-p-sulphonamidopyridine [prepared from the nitroamine (3 g.), toluene- p-sulphonyl chloride (5 g .), and pyridine (5 c.c.) at 100° for 2 hr .] crystallised from aqueous ethanol (charcoal) in colourless needles ($6.2 \mathrm{~g} ., 98 \%$), m. p. 148 - 149° (Found: C, $48 \cdot 7 ; \mathrm{H}, 3 \cdot 8 ; \mathrm{S}, 11 \cdot 0 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ requires C, $49 \cdot 1 ; \mathrm{H}, 3.8$; S, 10.9%).
(b) Isonicotinohydrazide was converted into 4-ethoxycarbonylaminopyridine ($\mathbf{7 0} \%$), prisms, m. p. 129° (from benzene-hexane), as described for 3 -ethoxycarbonylaminopyridine. ${ }^{8}$ Nitration of the urethane (5 g) as for the 3 -isomer ${ }^{8}$ gave 4 -ethoxycarbonylamino- 3 -nitropyridine ${ }^{9}$ ($3.8 \mathrm{~g} ., 60 \%$) which crystallised from aqueous ethanol in needles, m. p. 62° (Found: C, 45.8; $\mathrm{H}, 4 \cdot 4$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{4}: \mathrm{C}, 45 \cdot 5 ; \mathrm{H}, 4 \cdot 3 \%$). The nitrourethane (45 g .) was heated on a
${ }^{5}$ den Hertog, Overhoff, Beers, and de Bruyn, Rec. Trav. chim., 1950, 69, 468.
6 Kruger and Mann, J., 1955, 2755.
${ }^{7}$ Koenigs, Mields, and Gurlt, Ber., 1924, 57, 1179.
${ }^{8}$ Clark-Lewis and Thompson, J., 1957, 442.

- Takahashi and Ueda, Pharm. Bull. (Japan), 1956, 4, 133.
steam-bath with 2 N -sodium hydroxide ($400 \mathrm{c} . \mathrm{c}$.). Filtration next day gave 4 -amino-3-nitropyridine ($33 \mathrm{~g} ., 96 \%$), needles, m. p. $200-201^{\circ}$ raised by recrystallisation from ethanol to m. p. $203-204^{\circ}$ alone and when mixed with that prepared by method (a).

3,4-Diaminopyridine (6.7 g ., 80%) was obtained by catalytic hydrogenation of 4-amino-3nitropyridine (10 g .) in methanol over palladium, and it crystallised from water in needles, m. p. 220° (lit., ${ }^{10} 218-219^{\circ}$) (Found: C, $55 \cdot 4 ; \mathrm{H}, 6 \cdot 4 ; \mathrm{N}, 38 \cdot 4$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~N}_{3}$: C, $55 \cdot 0$; H, 6.5 ; N, 38.5%) [picrate, m. p. $234-236^{\circ}$ (lit., ${ }^{11} 235-237^{\circ}$)]. 1,3,5-Triazaindene, ${ }^{12}$ m. p. $168-169^{\circ}$, and $1,2,3,5$-tetra-azaindene, m. p. 244° (lit. ${ }^{1}$ m. p. 240°) (Found: C, $49 \cdot 6 ; \mathrm{H}, 3 \cdot 3$; N, 46.3. Calc. for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4}$: C, $50.0 ; \mathrm{H}, 3.4 ; \mathrm{N}, 46.7 \%$), were prepared by known methods. 1,2,3,5-Tetra-azaindene picrate crystallised from benzene in needles, m. p. 194° (Found: $\mathrm{C}, 38.0 ; \mathrm{H}, 2 \cdot 3 ; \mathrm{N}, 28.0 . \quad \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}_{4}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires $\mathrm{C}, 37.8 ; \mathrm{H}, 2 \cdot 0 ; \mathrm{N}, 28 \cdot 1 \%$).

3-Amino-4- and 4-Amino-3-toluene-p-sulphonamidopyridine.-Hydrogenation of 3-nitro-4-toluene- p-sulphonamidopyridine (6 g .) in acetic acid ($150 \mathrm{c} . c$.) at 5 atm . and room temperature over 5% palladised charcoal gave 3-amino-4-toluene-p-sulphonamidopyridine (3.8 g. , 70\%) which crystallised from ethanol-benzene in needles, m. p. 222-224 (Found: C, 54.7 ; H, 5.0; $\mathrm{S}, 12 \cdot 1$. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 54 \cdot 7 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 16 \cdot 0 ; \mathrm{S}, 12 \cdot 2 \%$). 3,4-Diaminopyridine (4 g.), toluene-p-sulphonyl chloride (9 g .), and pyridine ($7 \mathrm{c} . \mathrm{c}$.) were heated at 100° for 2 hr ., giving 4-amino-3-toluene-p-sulphonamidopyridine, which crystallised from methanol-ethanol (charcoal) in plates ($9.3 \mathrm{~g} ., 96 \%$), m. p. $245-246^{\circ}$ (Found: C, $54 \cdot 7 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 15 \cdot 5 ; \mathrm{S}, 12 \cdot 2 \%$).

4-Methylamino-3-nitropyridine (II; $\mathrm{R}=\mathrm{Me}$).-(a) 4-Ethoxycarbonylamino-3-nitropyridine (22 g .) was methylated with dimethyl sulphate (15 g .) and potassium carbonate (22 g .) in boiling acetone ($200 \mathrm{c} . c$.) for 8 hr ., and the suspension was then filtered. Evaporation left a residue (ca. 14 g .) which was hydrolysed with potassium hydroxide (9 g .) in water ($75 \mathrm{c} . \mathrm{c}$.) and ethanol ($5 \mathrm{c} . \mathrm{c}$.) at 100° for 2 hr ., and the solution was then stored at 0° for 14 hr . 3 -Methylamino-3nitropyridine ($6.5 \mathrm{~g} ., 65 \%$), m. p. $158-159^{\circ}$, was collected; it crystallised from ethanol (charcoal) in needles, m. p. 160° (lit., ${ }^{1}$ m. p. 162-163 ${ }^{\circ}$ (Found: C, $47 \cdot 4 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 27 \cdot 4$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}: \mathrm{C}, 47 \cdot 1 ; \mathrm{H}, \mathbf{4} \cdot \mathbf{6} ; \mathrm{N}, \mathbf{2 7} \cdot \mathbf{4} \%$).
(b) 4-Ethoxy-3-nitropyridine hydrochloride (20 g .) and $25-30 \%$ aqueous methylamine (40 c.c.) were heated under pressure at 110° for 5 hr . Recrystallisation of the product from ethanol (charcoal) gave 4-methylamino-3-nitropyridine ($14.7 \mathrm{~g} ., 98 \%$), m. p. 160° alone and when mixed with that described under (a).

3-Amino-4-methylaminopyridine.-4-Methylamino-3-nitropyridine (7.6 g.) in ethanol (200 c.c.) was reduced with hydrogen at 5 atm . over 1% palladised calcium carbonate for 6 hr . The filtrate from the catalyst darkened rapidly in air; it was evaporated under reduced pressure and crystallisation of the residue from benzene (charcoal) gave 3-amino-4-methylaminopyridine ($5.5 \mathrm{~g} ., 90 \%$) in needles, m. p. $169-170^{\circ}$ (lit. ${ }^{10} \mathrm{~m} . \mathrm{p} .169^{\circ}$) (Found: C, $58.0 ; \mathrm{H}, 7 \cdot 1 ; \mathrm{N}, 33.9$. Calc. for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3}$: C, 58.5 ; $\mathrm{H}, 7.4$; $\mathrm{N}, 34 \cdot 1 \%$) [picrate, m. p. 185° (lit., ${ }^{10} \mathrm{~m}$. p. 184°)]. The diamine was unstable in air and light and was stored as the dihydrochloride, needles, m. p. $227-228^{\circ}$ (Found: C, $37 \cdot 2 ; \mathrm{H}, 5 \cdot 8 ; \mathrm{Cl}, 36 \cdot 2 ; \mathrm{N}, 21 \cdot 3 . \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3}, 2 \mathrm{HCl}$ requires $\mathrm{C}, 36 \cdot 8 ; \mathrm{H}, 5 \cdot 4$; Cl, 36.2; N, $21 \cdot 4 \%$).

3-Methylamino-4-nitropyridine 1-Oxide.-3-Aminopyridine ${ }^{13}$ (28.6 g .) was converted into 3 -bromopyridine (30 g ., 66%), b. p. $61-63^{\circ} / 15 \mathrm{~mm}$., by the Sandmeyer reaction (cuprous bromide and hydrobromic acid). 3-Bromopyridine (8.95 g .) in glacial acetic acid (35 c.c.) and 30% hydrogen peroxide (10 c.c.) was converted during 14 hr . at $70-80^{\circ}$ into 3 -bromopyridine $1-$-xide ($9.6 \mathrm{~g} ., 95 \%$), b. p. $118^{\circ} / 0 \cdot 2-0.3 \mathrm{~mm}$., b. p. $129-130^{\circ} / 1.5 \mathrm{~mm}$., m. p. 42°, deliquescent (Found: $\mathrm{Br}, 46 \cdot 2$. $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{BrNO}$ requires $\mathrm{Br}, 45 \cdot 9 \%$). This N-oxide ($2 \cdot 25 \mathrm{~g}$.) in 92% sulphuric acid (4 c.c.) was added to a cooled mixture of nitric acid ($d \mathrm{l} \cdot 5 ; 6$ c.c.) and 92% sulphuric acid ($5 \mathrm{c.c}$.) and then warmed at 90° for $1 \frac{1}{2} \mathrm{hr}$., to give 3 -bromo-4-nitropyridine 1 -oxide ($2 \cdot 15 \mathrm{~g}$., 84%) in pale yellow needles, m. p. $154-155^{\circ}$ (lit., ${ }^{5} \mathrm{~m}$. p. $152-153^{\circ}$). This (3 g .) was heated on a steam-bath with 15% methanolic methylamine (10 c.c.) for 30 min . before removal of the solvent under reduced pressure; the residue of 3-methylamino-4-nitropyridine 1 -oxide crystallised from ethanol (charcoal) in needles (3.55 g., 90%), m. p. 227° (Found: C, $42.6 ; \mathrm{H}, 4.2 ; \mathrm{N}, 24.8$. $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 42 \cdot 6 ; \mathrm{H}, 4 \cdot 2 ; \mathrm{N}, 24.9 \%$).

4-Amino-3-methylaminopyridine.-(a) 3-Methylamino-4-nitropyridine 1 -oxide (1.2 g.$)$ in

[^0]methanol (50 c.c.) and acetic acid (2 c.c.) was hydrogenated over Raney nickel at room temperature and pressure during $1 \frac{1}{2} \mathrm{hr}$., the suspension was filtered, and the residue washed with boiling methanol. The filtrate was made strongly alkaline with aqueous sodium hydroxide before continuous extraction with ether for 36 hr . Evaporation of the ether and crystallisation of the residue from light petroleum (b. p. $40-60^{\circ}$) gave 4-amino-3-methylaminopyridine (0.7 g ., 87%) in needles, m. p. 114° (Found: C, $58.4 ; \mathrm{H}, 7.6 ; \mathrm{N}, 34.3 . \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3}$ requires C, 58.5 ; $\mathrm{H}, 7 \cdot 4 ; \mathrm{N}, 34 \cdot 2 \%$). The picrate melted at 233° (Found: C, $41 \cdot 1 ; \mathrm{H}, 3 \cdot 6 ; \mathrm{N}, 24 \cdot 1$. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{7}$ requires C, $\mathbf{4 0 . 9} ; \mathrm{H}, \mathbf{3 . 4} ; \mathrm{N}, 23.9 \%$).
(b) 4-Amino-3-toluene-p-sulphonamidopyridine (10 g .) was treated for 8 hr . in boiling acetone ($400 \mathrm{c} . \mathrm{c}$.) with methyl sulphate (5 g .) and anhydrous potassium carbonate ($\mathbf{1 0 . 5 \mathrm { g } \text { .). }}$ Evaporation of the filtrate left a semi-solid residue which was hydrolysed with 80% sulphuric acid ($\mathbf{1 0}$ c.c.) on a steam-bath for 3 hr . The diluted solution was basified with sodium hydroxide before extraction with ether (36 hr .) to separate the diamine, which crystallised from light petroleum (b. p. $40-60^{\circ}$) (charcoal) in needles ($1 \cdot 3 \mathrm{~g} ., 30 \%$), m. p. 114° alone and when mixed with that obtained by method (a).

2-Mercapto-1,3,5-triazaindene.-Carbon disulphide ($1 \cdot 6 \mathrm{~g}$.) in ethanol (5 c.c.) was added to a solution of 3,4-diaminopyridine (2 g :) in ethanol (25 c.c.), and the mixture was boiled for 6 hr . 2-Mercapto-1,3,5-triazaindene crystallised from the cold solution and recrystallisation from aqueous ethanol (charcoal) gave prisms ($1.7 \mathrm{~g} ., 62 \%$), m. p. 370° (Found: C, $47.8 ; \mathrm{H}, \mathbf{3 . 4}$; S, 20.8. $\quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{~S}$ requires $\mathrm{C}, 47 \cdot 7 ; \mathrm{H}, 3.3 ; \mathrm{S}, 21 \cdot 2 \%$), $\lambda_{\text {max. }}$ in N -sodium hydroxide 232 ($\varepsilon 23,500$) and $298-299 \mathrm{~m} \mu(\varepsilon 14,000)$, $\lambda_{\text {min. }} 261 \mathrm{~m} \mu(\varepsilon 2900)$.

We are grateful to the Anti-Cancer Campaign Committee of the University of Adelaide for a maintenance grant (to R. P. S.), and to the Sloan-Kettering Institute for Cancer Research for biological testing. Microanalyses were carried out under the supervision of Dr. W. Zimmermann, C.S.I.R.O. Microanalytical Laboratory, Melbourne.

[^0]: ${ }_{10}$ Weidenhagen, Train, Wegner, and Nordström, Ber., 1942, 75, 1936.
 ${ }_{11}$ Koenigs, Bueren, and Jung, Ber., 1936, 69, 2690.
 12 Weidenhagen and Weeden, Ber., 1938, 'r1, 2347; Albert and Pedersen, $J ., 1956,4683$.
 ${ }^{13}$ Allen and Wolff, Org. Synth., 1950, 30, 3.

